Practice Exam 1 — Functional Analysis (WIFA-08)

University of Groningen

Instructions

- 1. The use of calculators, books, or notes is not allowed.
- 2. All answers need to be accompanied with an explanation or a calculation: only answering "yes", "no", or "42" is not sufficient.

Problem 1

Consider the following normed linear space:

$$\ell^{1} = \left\{ x = (x_{1}, x_{2}, x_{3}, \dots) : \sum_{i=1}^{\infty} |x_{i}| < \infty \right\},$$
$$\|x\|_{1} = \sum_{i=1}^{\infty} |x_{i}|.$$

- (a) Prove that ℓ^1 provided with the norm $\|\cdot\|_1$ is a Banach space.
- (b) Prove that $||x||_s = \sup_{n \in \mathbb{N}} \left| \sum_{i=1}^n x_i \right|$ is also a norm on ℓ^1 .
- (c) Prove that $||x||_s \leq ||x||_1$ for all $x \in \ell^1$.
- (d) Are the norms $\|\cdot\|_1$ and $\|\cdot\|_s$ equivalent?

Problem 2

Consider the following linear operator:

$$S_r: \ell^2 \to \ell^2, \quad (x_1, x_2, x_3, \dots) \mapsto (0, x_1, x_2, x_3, \dots).$$

Prove the following statements:

- (a) $||S_r|| = 1;$
- (b) S_r is not compact;
- (c) S_r has no eigenvalues;
- (d) $|\lambda| < 1$ implies that ran $(S_r \lambda)$ is not dense in ℓ^2 ;
- (e) $\sigma(S_r) = \{\lambda \in \mathbb{C} : |\lambda| \le 1\}.$

Problem 3

- (a) Formulate the closed graph theorem.
- (b) Let X be a Banach space and let $V, W \subset X$ be closed linear subspaces such that X = V + W is a direct sum. This means that each $x \in X$ can be uniquely written as x = v + w with $v \in V$ and $w \in W$.

Prove the following statements:

- (i) $P: X \to X$ defined by Px = v is a linear map;
- (ii) P is a projection;
- (iii) P is bounded.

Problem 4

- (a) Formulate the Hahn-Banach theorem for normed linear spaces.
- (b) Let X be a normed linear space and let $V \subset X$ be a linear subspace. Prove that the following statements are equivalent:
 - (i) V is dense in X;
 - (ii) $f \in X'$ with f(v) = 0 for all $v \in V$ implies that f = 0.

Solution of Problem 1

(a) Let x^n be a Cauchy sequence in $\ell^1.$ Then for every $\varepsilon>0$ there exists $N\in\mathbb{N}$ such that

$$m, n \ge N \quad \Rightarrow \quad |x_i^n - x_i^m| \le \sum_{i=1}^{\infty} |x_i^n - x_i^m| = ||x^n - x^m||_1 \le \varepsilon.$$

In particular, (x_i^n) is a Cauchy sequence in \mathbb{K} for all $i \in \mathbb{N}$. Since \mathbb{K} is complete $x_i^n \to x_i$ for some $x_i \in \mathbb{K}$. Define

$$x = (x_1, x_2, x_3, \dots)$$

and let $p \in \mathbb{N}$ be arbitrary. Then

$$m, n \ge N \quad \Rightarrow \quad \sum_{i=1}^{p} |x_i^n - x_i^m| \le \varepsilon$$
$$\Rightarrow \quad \sum_{i=1}^{p} |x_i^n - x_i| \le \varepsilon \quad (\text{let } m \to \infty)$$
$$\Rightarrow \quad \sum_{i=1}^{\infty} |x_i^n - x_i| \le \varepsilon \quad (\text{let } p \to \infty)$$
$$\Rightarrow \quad ||x^n - x||_1 \le \varepsilon$$

which shows that $x^n \to x$ in ℓ^1 . In addition, since $x^N \in \ell^1$ and $x^N - x \in \ell^2$ it follows that $x = x^N - (x^N - x) \in \ell^1$.

(b) Clearly $||x||_s \ge 0$ and

$$||x||_{s} = 0 \quad \Rightarrow \quad \sup_{n \in \mathbb{N}} \left| \sum_{i=1}^{n} x_{i} \right| = 0$$

$$\Rightarrow \quad \left| \sum_{i=1}^{n} x_{i} \right| = 0 \quad \forall n \in \mathbb{N}$$

$$\Rightarrow \quad |x_{1}| = 0, \quad |x_{1} + x_{2}| = 0, \quad |x_{1} + x_{2} + x_{3}| = 0, \dots$$

$$\Rightarrow \quad x = 0.$$

If $\lambda \in \mathbb{K}$ then

$$\|\lambda x\|_s = \sup_{n \in \mathbb{N}} \left| \sum_{i=1}^n \lambda x_i \right| = \sup_{n \in \mathbb{N}} |\lambda| \left| \sum_{i=1}^n x_i \right| = |\lambda| \|x\|_s$$

Finally, the triangle inequality is proven as follows:

$$||x+y||_{s} = \sup_{n \in \mathbb{N}} \left| \sum_{i=1}^{n} (x_{i}+y_{i}) \right| \le \sup_{n \in \mathbb{N}} \left\{ \left| \sum_{i=1}^{n} x_{i} \right| + \left| \sum_{i=1}^{n} y_{i} \right| \right\} \le ||x||_{s} + ||y||_{s}.$$

(c) This follows from:

$$\|x\|_{s} = \sup_{n \in \mathbb{N}} \left| \sum_{i=1}^{n} x_{i} \right| \le \sup_{n \in \mathbb{N}} \sum_{i=1}^{n} |x_{i}| = \|x\|_{1}.$$

- Page 3 of 5 -

(d) The norms $\|\cdot\|_1$ and $\|\cdot\|_s$ are not equivalent. Indeed, take the sequence

$$x^{n} = \left(\underbrace{\frac{1}{n}, -\frac{1}{n}, \dots, \frac{1}{n}, -\frac{1}{n}}_{n \text{ times}}, 0, 0, 0, \dots\right)$$

then $||x^n||_s = 1/n \to 0$ whereas $||x^n||_1 = 2$ for all $n \in \mathbb{N}$.

Solution of Problem 2

(a) For every $x \in \ell^2$ we have $||S_r x||_2 = ||x||_2$ which implies that

$$||S_r|| = \sup_{x \neq 0} \frac{||S_r x||_2}{||x||_2} = 1$$

(b) Let $x^n \in \ell^2$ the *n*-th unit vector (i.e., zeros everywhere, except for a 1 at the *n*-th position). Then (x^n) is bounded in ℓ^2 as $||x^n|| = 1$ for all $n \in \mathbb{N}$ but

$$||S_r x^n - S_r x^m|| = \sqrt{2}, \quad n \ge m.$$

This implies that $(S_r x^n)$ does not have a convergent subsequence. Hence, S_r is not compact.

(c) Assume that $S_r x = \lambda x$. Since S_r is isometric (see part a), it follows that S_r is injective and thus $\lambda \neq 0$. Note that

$$(0, x_1, x_2, x_3, \dots) = (\lambda x_1, \lambda x_2, \lambda x_3, \dots),$$

which implies that x = 0. Hence, S_r has no eigenvalues.

(d) If $|\lambda| < 1$ then $y = (1, \overline{\lambda}, \overline{\lambda}^2, \dots) \in \ell^2$. Note that

$$y \perp (S_r - \lambda)x = (-\lambda x_1, x_1 - \lambda x_2, x_2 - \lambda x_3, \dots) \in \operatorname{ran}(S_r - \lambda)$$

for all $x \in \ell^2$. This implies that ran $(S_r - \lambda)$ is not dense in ℓ^2 which shows that $\lambda \in \sigma(S_r)$.

(e) From part (b) it follows that $\{\lambda \in \mathbb{C} : |\lambda| < 1\} \subset \sigma(S_r)$. Since the spectrum is closed, it also follows that $\{\lambda \in \mathbb{C} : |\lambda| \le 1\} \subset \sigma(S_r)$. On the other hand, if $|\lambda| > 1 = ||S_r||$, then it follows that $\lambda \in \rho(S_r)$. We conclude that $\sigma(S_r) = \{\lambda \in \mathbb{C} : |\lambda| \le 1\}$.

Solution of Problem 3

(a) Assume that X and Y are Banach spaces, $U \subset X$ is a closed linear subspace, and $T: U \to Y$ is a linear operator. If the graph G(T) of T is closed then $T \in B(U, Y)$. (b) (i) Let $x, y \in X$, then there exist unique $v_1, v_2 \in V$ and $w_1, w_2 \in W$ such that $x = v_1 + w_1$ and $y = v_2 + w_2$. Then

$$\lambda x + \mu y = (\lambda v_1 + \mu v_2) + (\lambda w_1 + \mu w_2)$$

where $\lambda v_1 + \mu v_2 \in V$ and $\lambda w_1 + \mu w_2 \in W$. Hence,

$$P(\lambda x + \mu y) = \lambda v_1 + \mu v_2 = \lambda P x + \mu P y,$$

which shows that P is indeed a linear map.

- (ii) Write x = v + w with $v \in V$ and $w \in W$, then Px = v = v + 0 and the latter decomposition is unique. Hence, $P^2x = Pv = v = Px$ which shows that $P^2 = P$ so that P is indeed a projection.
- (iii) Let $(x, y) \in \overline{G(P)}$ then there exists a sequence $(x_n, Px_n) \to (x, y)$. In particular, it follows that $x_n \to x$ in X and $Px_n \to y$ in X. Since $Px_n \in$ V for all $n \in \mathbb{N}$ and V is closed, it follows that $y \in V$ as well. Since $x_n - Px_n \in W$ for all $n \in \mathbb{N}, x_n - Px_n \to x - y$, and W is closed, it follows that $x - y \in W$. Hence, Px - y = P(x - y) = 0 so that y = Px. This shows that $(x, y) \in G(P)$ and we conclude that P is closed. Applying the closed graph theorem with U = X = Y shows that P is bounded.

Solution of Problem 4

- (a) Let X be a normed linear space and let $V \subset X$ be a linear subspace. If $f \in V'$ then there exists $F \in X'$ such that F(v) = f(v) for all $v \in V$ and ||F|| = ||f||.
- (b) Assume that V is dense in X. Let $x \in X$, then there exists $v_n \in V$ such that $v_n \to x$. If $f \in X'$ satisfies f(v) = 0 for all $v \in V$, then

$$|f(x)| = |f(x - v_n) + f(v_n)| = |f(x - v_n)| \le ||f|| ||x - v_n|| \to 0$$

which shows that f(x) = 0. Since $x \in X$ was arbitrary it follows that f = 0.

For the converse, assume that V is not dense in X. Pick $x_0 \in X \setminus \overline{V}$ and define the linear functional

$$g: \operatorname{span} \{V, x_0\} \to \mathbb{K}, \quad g(v + \lambda x_0) = \lambda$$

By the Hahn-Banach theorem there exists $G \in X'$ which extends g to all of X. Clearly, G(v) = 0 for all $v \in V$ while $G \neq 0$ as $G(x_0) = 1$. This leads to a contradiction. Hence, V must be dense in X.