
Practice Exam 1 — Functional Analysis (WIFA–08)

University of Groningen

Instructions

1. The use of calculators, books, or notes is not allowed.

2. All answers need to be accompanied with an explanation or a calculation: only
answering “yes”, “no”, or “42” is not sufficient.

Problem 1

Consider the following normed linear space:

ℓ1 =

{

x = (x1, x2, x3, . . . ) :

∞∑

i=1

|xi| < ∞
}

,

‖x‖1 =
∞∑

i=1

|xi|.

(a) Prove that ℓ1 provided with the norm ‖ · ‖1 is a Banach space.

(b) Prove that ‖x‖s = supn∈N

∣
∣
∑n

i=1
xi

∣
∣ is also a norm on ℓ1.

(c) Prove that ‖x‖s ≤ ‖x‖1 for all x ∈ ℓ1.

(d) Are the norms ‖ · ‖1 and ‖ · ‖s equivalent?

Problem 2

Consider the following linear operator:

Sr : ℓ
2 → ℓ2, (x1, x2, x3, . . . ) 7→ (0, x1, x2, x3, . . . ).

Prove the following statements:

(a) ‖Sr‖ = 1;

(b) Sr is not compact;

(c) Sr has no eigenvalues;

(d) |λ| < 1 implies that ran (Sr − λ) is not dense in ℓ2;

(e) σ(Sr) = {λ ∈ C : |λ| ≤ 1}.
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Problem 3

(a) Formulate the closed graph theorem.

(b) Let X be a Banach space and let V,W ⊂ X be closed linear subspaces such
that X = V +W is a direct sum. This means that each x ∈ X can be uniquely
written as x = v + w with v ∈ V and w ∈ W .

Prove the following statements:

(i) P : X → X defined by Px = v is a linear map;

(ii) P is a projection;

(iii) P is bounded.

Problem 4

(a) Formulate the Hahn-Banach theorem for normed linear spaces.

(b) Let X be a normed linear space and let V ⊂ X be a linear subspace. Prove
that the following statements are equivalent:

(i) V is dense in X ;

(ii) f ∈ X ′ with f(v) = 0 for all v ∈ V implies that f = 0.

End of test
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Solution of Problem 1

(a) Let xn be a Cauchy sequence in ℓ1. Then for every ε > 0 there exists N ∈ N

such that

m,n ≥ N ⇒ |xn
i − xm

i | ≤
∞∑

i=1

|xn
i − xm

i | = ‖xn − xm‖1 ≤ ε.

In particular, (xn
i ) is a Cauchy sequence in K for all i ∈ N. Since K is complete

xn
i → xi for some xi ∈ K. Define

x = (x1, x2, x3, . . . )

and let p ∈ N be arbitrary. Then

m,n ≥ N ⇒
p

∑

i=1

|xn
i − xm

i | ≤ ε

⇒
p

∑

i=1

|xn
i − xi| ≤ ε (let m → ∞)

⇒
∞∑

i=1

|xn
i − xi| ≤ ε (let p → ∞)

⇒ ‖xn − x‖1 ≤ ε

which shows that xn → x in ℓ1. In addition, since xN ∈ ℓ1 and xN − x ∈ ℓ2 it
follows that x = xN − (xN − x) ∈ ℓ1.

(b) Clearly ‖x‖s ≥ 0 and

‖x‖s = 0 ⇒ sup
n∈N

∣
∣
∣
∣

n∑

i=1

xi

∣
∣
∣
∣
= 0

⇒
∣
∣
∣
∣

n∑

i=1

xi

∣
∣
∣
∣
= 0 ∀n ∈ N

⇒ |x1| = 0, |x1 + x2| = 0, |x1 + x2 + x3| = 0, . . .

⇒ x = 0.

If λ ∈ K then

‖λx‖s = sup
n∈N

∣
∣
∣
∣

n∑

i=1

λxi

∣
∣
∣
∣
= sup

n∈N

|λ|
∣
∣
∣
∣

n∑

i=1

xi

∣
∣
∣
∣
= |λ| ‖x‖s.

Finally, the triangle inequality is proven as follows:

‖x+ y‖s = sup
n∈N

∣
∣
∣
∣

n∑

i=1

(xi + yi)

∣
∣
∣
∣
≤ sup

n∈N

{∣
∣
∣
∣

n∑

i=1

xi

∣
∣
∣
∣
+

∣
∣
∣
∣

n∑

i=1

yi

∣
∣
∣
∣

}

≤ ‖x‖s + ‖y‖s.

(c) This follows from:

‖x‖s = sup
n∈N

∣
∣
∣
∣

n∑

i=1

xi

∣
∣
∣
∣
≤ sup

n∈N

n∑

i=1

|xi| = ‖x‖1.
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(d) The norms ‖ · ‖1 and ‖ · ‖s are not equivalent. Indeed, take the sequence

xn =

(
1

n
,−1

n
, . . . ,

1

n
,−1

n
︸ ︷︷ ︸

n times

, 0, 0, 0, . . .

)

then ‖xn‖s = 1/n → 0 whereas ‖xn‖1 = 2 for all n ∈ N.

Solution of Problem 2

(a) For every x ∈ ℓ2 we have ‖Srx‖2 = ‖x‖2 which implies that

‖Sr‖ = sup
x 6=0

‖Srx‖2
‖x‖2

= 1.

(b) Let xn ∈ ℓ2 the n-th unit vector (i.e., zeros everywhere, except for a 1 at the
n-th position). Then (xn) is bounded in ℓ2 as ‖xn‖ = 1 for all n ∈ N but

‖Srx
n − Srx

m‖ =
√
2, n ≥ m.

This implies that (Srx
n) does not have a convergent subsequence. Hence, Sr is

not compact.

(c) Assume that Srx = λx. Since Sr is isometric (see part a), it follows that Sr is
injective and thus λ 6= 0. Note that

(0, x1, x2, x3, . . . ) = (λx1, λx2, λx3, . . . ),

which implies that x = 0. Hence, Sr has no eigenvalues.

(d) If |λ| < 1 then y = (1, λ̄, λ̄2, . . . ) ∈ ℓ2. Note that

y ⊥ (Sr − λ)x = (−λx1, x1 − λx2, x2 − λx3, . . . ) ∈ ran (Sr − λ)

for all x ∈ ℓ2. This implies that ran (Sr −λ) is not dense in ℓ2 which shows that
λ ∈ σ(Sr).

(e) From part (b) it follows that {λ ∈ C : |λ| < 1} ⊂ σ(Sr). Since the spectrum
is closed, it also follows that {λ ∈ C : |λ| ≤ 1} ⊂ σ(Sr). On the other
hand, if |λ| > 1 = ‖Sr‖, then it follows that λ ∈ ρ(Sr). We conclude that
σ(Sr) = {λ ∈ C : |λ| ≤ 1}.

Solution of Problem 3

(a) Assume that X and Y are Banach spaces, U ⊂ X is a closed linear subspace,
and T : U → Y is a linear operator. If the graph G(T ) of T is closed then
T ∈ B(U, Y ).
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(b) (i) Let x, y ∈ X , then there exist unique v1, v2 ∈ V and w1, w2 ∈ W such that
x = v1 + w1 and y = v2 + w2. Then

λx+ µy = (λv1 + µv2) + (λw1 + µw2)

where λv1 + µv2 ∈ V and λw1 + µw2 ∈ W . Hence,

P (λx+ µy) = λv1 + µv2 = λPx+ µPy,

which shows that P is indeed a linear map.

(ii) Write x = v + w with v ∈ V and w ∈ W , then Px = v = v + 0 and the
latter decomposition is unique. Hence, P 2x = Pv = v = Px which shows
that P 2 = P so that P is indeed a projection.

(iii) Let (x, y) ∈ G(P ) then there exists a sequence (xn, Pxn) → (x, y). In
particular, it follows that xn → x in X and Pxn → y in X . Since Pxn ∈
V for all n ∈ N and V is closed, it follows that y ∈ V as well. Since
xn−Pxn ∈ W for all n ∈ N, xn−Pxn → x− y, and W is closed, it follows
that x − y ∈ W . Hence, Px − y = P (x − y) = 0 so that y = Px. This
shows that (x, y) ∈ G(P ) and we conclude that P is closed. Applying the
closed graph theorem with U = X = Y shows that P is bounded.

Solution of Problem 4

(a) Let X be a normed linear space and let V ⊂ X be a linear subspace. If f ∈ V ′

then there exists F ∈ X ′ such that F (v) = f(v) for all v ∈ V and ‖F‖ = ‖f‖.
(b) Assume that V is dense in X . Let x ∈ X , then there exists vn ∈ V such that

vn → x. If f ∈ X ′ satisfies f(v) = 0 for all v ∈ V , then

|f(x)| = |f(x− vn) + f(vn)| = |f(x− vn)| ≤ ‖f‖ ‖x− vn‖ → 0

which shows that f(x) = 0. Since x ∈ X was arbitrary it follows that f = 0.

For the converse, assume that V is not dense in X . Pick x0 ∈ X \ V and define
the linear functional

g : span {V, x0} → K, g(v + λx0) = λ.

By the Hahn-Banach theorem there exists G ∈ X ′ which extends g to all of X .
Clearly, G(v) = 0 for all v ∈ V while G 6= 0 as G(x0) = 1. This leads to a
contradiction. Hence, V must be dense in X .
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