Practice Exam 1 - Functional Analysis (WIFA-08)
 University of Groningen

Instructions

1. The use of calculators, books, or notes is not allowed.
2. All answers need to be accompanied with an explanation or a calculation: only answering "yes", "no", or " 42 " is not sufficient.

Problem 1

Consider the following normed linear space:

$$
\begin{aligned}
\ell^{1} & =\left\{x=\left(x_{1}, x_{2}, x_{3}, \ldots\right): \sum_{i=1}^{\infty}\left|x_{i}\right|<\infty\right\}, \\
\|x\|_{1} & =\sum_{i=1}^{\infty}\left|x_{i}\right| .
\end{aligned}
$$

(a) Prove that ℓ^{1} provided with the norm $\|\cdot\|_{1}$ is a Banach space.
(b) Prove that $\|x\|_{s}=\sup _{n \in \mathbb{N}}\left|\sum_{i=1}^{n} x_{i}\right|$ is also a norm on ℓ^{1}.
(c) Prove that $\|x\|_{s} \leq\|x\|_{1}$ for all $x \in \ell^{1}$.
(d) Are the norms $\|\cdot\|_{1}$ and $\|\cdot\|_{s}$ equivalent?

Problem 2

Consider the following linear operator:

$$
S_{r}: \ell^{2} \rightarrow \ell^{2}, \quad\left(x_{1}, x_{2}, x_{3}, \ldots\right) \mapsto\left(0, x_{1}, x_{2}, x_{3}, \ldots\right) .
$$

Prove the following statements:
(a) $\left\|S_{r}\right\|=1$;
(b) S_{r} is not compact;
(c) S_{r} has no eigenvalues;
(d) $|\lambda|<1$ implies that ran $\left(S_{r}-\lambda\right)$ is not dense in ℓ^{2};
(e) $\sigma\left(S_{r}\right)=\{\lambda \in \mathbb{C}:|\lambda| \leq 1\}$.

Problem 3

(a) Formulate the closed graph theorem.
(b) Let X be a Banach space and let $V, W \subset X$ be closed linear subspaces such that $X=V+W$ is a direct sum. This means that each $x \in X$ can be uniquely written as $x=v+w$ with $v \in V$ and $w \in W$.

Prove the following statements:
(i) $P: X \rightarrow X$ defined by $P x=v$ is a linear map;
(ii) P is a projection;
(iii) P is bounded.

Problem 4

(a) Formulate the Hahn-Banach theorem for normed linear spaces.
(b) Let X be a normed linear space and let $V \subset X$ be a linear subspace. Prove that the following statements are equivalent:
(i) V is dense in X;
(ii) $f \in X^{\prime}$ with $f(v)=0$ for all $v \in V$ implies that $f=0$.

End of test

Solution of Problem 1

(a) Let x^{n} be a Cauchy sequence in ℓ^{1}. Then for every $\varepsilon>0$ there exists $N \in \mathbb{N}$ such that

$$
m, n \geq N \quad \Rightarrow \quad\left|x_{i}^{n}-x_{i}^{m}\right| \leq \sum_{i=1}^{\infty}\left|x_{i}^{n}-x_{i}^{m}\right|=\left\|x^{n}-x^{m}\right\|_{1} \leq \varepsilon
$$

In particular, $\left(x_{i}^{n}\right)$ is a Cauchy sequence in \mathbb{K} for all $i \in \mathbb{N}$. Since \mathbb{K} is complete $x_{i}^{n} \rightarrow x_{i}$ for some $x_{i} \in \mathbb{K}$. Define

$$
x=\left(x_{1}, x_{2}, x_{3}, \ldots\right)
$$

and let $p \in \mathbb{N}$ be arbitrary. Then

$$
\begin{aligned}
m, n \geq N & \Rightarrow \quad \sum_{i=1}^{p}\left|x_{i}^{n}-x_{i}^{m}\right| \leq \varepsilon \\
& \Rightarrow \quad \sum_{i=1}^{p}\left|x_{i}^{n}-x_{i}\right| \leq \varepsilon \quad(\text { let } m \rightarrow \infty) \\
& \Rightarrow \quad \sum_{i=1}^{\infty}\left|x_{i}^{n}-x_{i}\right| \leq \varepsilon \quad(\text { let } p \rightarrow \infty) \\
& \Rightarrow \quad\left\|x^{n}-x\right\|_{1} \leq \varepsilon
\end{aligned}
$$

which shows that $x^{n} \rightarrow x$ in ℓ^{1}. In addition, since $x^{N} \in \ell^{1}$ and $x^{N}-x \in \ell^{2}$ it follows that $x=x^{N}-\left(x^{N}-x\right) \in \ell^{1}$.
(b) Clearly $\|x\|_{s} \geq 0$ and

$$
\begin{aligned}
\|x\|_{s}=0 & \Rightarrow \sup _{n \in \mathbb{N}}\left|\sum_{i=1}^{n} x_{i}\right|=0 \\
& \Rightarrow\left|\sum_{i=1}^{n} x_{i}\right|=0 \quad \forall n \in \mathbb{N} \\
& \Rightarrow \quad\left|x_{1}\right|=0, \quad\left|x_{1}+x_{2}\right|=0, \quad\left|x_{1}+x_{2}+x_{3}\right|=0, \ldots \\
& \Rightarrow x=0
\end{aligned}
$$

If $\lambda \in \mathbb{K}$ then

$$
\|\lambda x\|_{s}=\sup _{n \in \mathbb{N}}\left|\sum_{i=1}^{n} \lambda x_{i}\right|=\sup _{n \in \mathbb{N}}|\lambda|\left|\sum_{i=1}^{n} x_{i}\right|=|\lambda|\|x\|_{s} .
$$

Finally, the triangle inequality is proven as follows:

$$
\|x+y\|_{s}=\sup _{n \in \mathbb{N}}\left|\sum_{i=1}^{n}\left(x_{i}+y_{i}\right)\right| \leq \sup _{n \in \mathbb{N}}\left\{\left|\sum_{i=1}^{n} x_{i}\right|+\left|\sum_{i=1}^{n} y_{i}\right|\right\} \leq\|x\|_{s}+\|y\|_{s} .
$$

(c) This follows from:

$$
\|x\|_{s}=\sup _{n \in \mathbb{N}}\left|\sum_{i=1}^{n} x_{i}\right| \leq \sup _{n \in \mathbb{N}} \sum_{i=1}^{n}\left|x_{i}\right|=\|x\|_{1} .
$$

(d) The norms $\|\cdot\|_{1}$ and $\|\cdot\|_{s}$ are not equivalent. Indeed, take the sequence

$$
x^{n}=(\underbrace{\frac{1}{n},-\frac{1}{n}, \ldots, \frac{1}{n},-\frac{1}{n}}_{n \text { times }}, 0,0,0, \ldots)
$$

then $\left\|x^{n}\right\|_{s}=1 / n \rightarrow 0$ whereas $\left\|x^{n}\right\|_{1}=2$ for all $n \in \mathbb{N}$.

Solution of Problem 2

(a) For every $x \in \ell^{2}$ we have $\left\|S_{r} x\right\|_{2}=\|x\|_{2}$ which implies that

$$
\left\|S_{r}\right\|=\sup _{x \neq 0} \frac{\left\|S_{r} x\right\|_{2}}{\|x\|_{2}}=1
$$

(b) Let $x^{n} \in \ell^{2}$ the n-th unit vector (i.e., zeros everywhere, except for a 1 at the n-th position). Then $\left(x^{n}\right)$ is bounded in ℓ^{2} as $\left\|x^{n}\right\|=1$ for all $n \in \mathbb{N}$ but

$$
\left\|S_{r} x^{n}-S_{r} x^{m}\right\|=\sqrt{2}, \quad n \geq m
$$

This implies that $\left(S_{r} x^{n}\right)$ does not have a convergent subsequence. Hence, S_{r} is not compact.
(c) Assume that $S_{r} x=\lambda x$. Since S_{r} is isometric (see part a), it follows that S_{r} is injective and thus $\lambda \neq 0$. Note that

$$
\left(0, x_{1}, x_{2}, x_{3}, \ldots\right)=\left(\lambda x_{1}, \lambda x_{2}, \lambda x_{3}, \ldots\right),
$$

which implies that $x=0$. Hence, S_{r} has no eigenvalues.
(d) If $|\lambda|<1$ then $y=\left(1, \bar{\lambda}, \bar{\lambda}^{2}, \ldots\right) \in \ell^{2}$. Note that

$$
y \perp\left(S_{r}-\lambda\right) x=\left(-\lambda x_{1}, x_{1}-\lambda x_{2}, x_{2}-\lambda x_{3}, \ldots\right) \in \operatorname{ran}\left(S_{r}-\lambda\right)
$$

for all $x \in \ell^{2}$. This implies that $\operatorname{ran}\left(S_{r}-\lambda\right)$ is not dense in ℓ^{2} which shows that $\lambda \in \sigma\left(S_{r}\right)$.
(e) From part (b) it follows that $\{\lambda \in \mathbb{C}:|\lambda|<1\} \subset \sigma\left(S_{r}\right)$. Since the spectrum is closed, it also follows that $\{\lambda \in \mathbb{C}:|\lambda| \leq 1\} \subset \sigma\left(S_{r}\right)$. On the other hand, if $|\lambda|>1=\left\|S_{r}\right\|$, then it follows that $\lambda \in \rho\left(S_{r}\right)$. We conclude that $\sigma\left(S_{r}\right)=\{\lambda \in \mathbb{C}:|\lambda| \leq 1\}$.

Solution of Problem 3

(a) Assume that X and Y are Banach spaces, $U \subset X$ is a closed linear subspace, and $T: U \rightarrow Y$ is a linear operator. If the graph $G(T)$ of T is closed then $T \in B(U, Y)$.
(b) (i) Let $x, y \in X$, then there exist unique $v_{1}, v_{2} \in V$ and $w_{1}, w_{2} \in W$ such that $x=v_{1}+w_{1}$ and $y=v_{2}+w_{2}$. Then

$$
\lambda x+\mu y=\left(\lambda v_{1}+\mu v_{2}\right)+\left(\lambda w_{1}+\mu w_{2}\right)
$$

where $\lambda v_{1}+\mu v_{2} \in V$ and $\lambda w_{1}+\mu w_{2} \in W$. Hence,

$$
P(\lambda x+\mu y)=\lambda v_{1}+\mu v_{2}=\lambda P x+\mu P y
$$

which shows that P is indeed a linear map.
(ii) Write $x=v+w$ with $v \in V$ and $w \in W$, then $P x=v=v+0$ and the latter decomposition is unique. Hence, $P^{2} x=P v=v=P x$ which shows that $P^{2}=P$ so that P is indeed a projection.
(iii) Let $(x, y) \in \overline{G(P)}$ then there exists a sequence $\left(x_{n}, P x_{n}\right) \rightarrow(x, y)$. In particular, it follows that $x_{n} \rightarrow x$ in X and $P x_{n} \rightarrow y$ in X. Since $P x_{n} \in$ V for all $n \in \mathbb{N}$ and V is closed, it follows that $y \in V$ as well. Since $x_{n}-P x_{n} \in W$ for all $n \in \mathbb{N}, x_{n}-P x_{n} \rightarrow x-y$, and W is closed, it follows that $x-y \in W$. Hence, $P x-y=P(x-y)=0$ so that $y=P x$. This shows that $(x, y) \in G(P)$ and we conclude that P is closed. Applying the closed graph theorem with $U=X=Y$ shows that P is bounded.

Solution of Problem 4

(a) Let X be a normed linear space and let $V \subset X$ be a linear subspace. If $f \in V^{\prime}$ then there exists $F \in X^{\prime}$ such that $F(v)=f(v)$ for all $v \in V$ and $\|F\|=\|f\|$.
(b) Assume that V is dense in X. Let $x \in X$, then there exists $v_{n} \in V$ such that $v_{n} \rightarrow x$. If $f \in X^{\prime}$ satisfies $f(v)=0$ for all $v \in V$, then

$$
|f(x)|=\left|f\left(x-v_{n}\right)+f\left(v_{n}\right)\right|=\left|f\left(x-v_{n}\right)\right| \leq\|f\|\left\|x-v_{n}\right\| \rightarrow 0
$$

which shows that $f(x)=0$. Since $x \in X$ was arbitrary it follows that $f=0$.
For the converse, assume that V is not dense in X. Pick $x_{0} \in X \backslash \bar{V}$ and define the linear functional

$$
g: \operatorname{span}\left\{V, x_{0}\right\} \rightarrow \mathbb{K}, \quad g\left(v+\lambda x_{0}\right)=\lambda .
$$

By the Hahn-Banach theorem there exists $G \in X^{\prime}$ which extends g to all of X. Clearly, $G(v)=0$ for all $v \in V$ while $G \neq 0$ as $G\left(x_{0}\right)=1$. This leads to a contradiction. Hence, V must be dense in X.

